Group Nearest Neighbor Queries in the L 1 Plane
نویسندگان
چکیده
Let P be a set of n points in the plane. The k-nearest neighbor (k-NN) query problem is to preprocess P into a data structure that quickly reports k closest points in P for a query point q. This paper addresses a generalization of the k-NN query problem to a query set Q of points, namely, the group nearest neighbor problem, in the L1 plane. More precisely, a query is assigned with a set Q of at most m points and a positive integer k with k ≤ n, and the distance between a point p and a query set Q is determined as the sum of L1 distances from p to all q ∈ Q. The maximum number m of query points Q is assumed to be known in advance and to be at most n; that is, m ≤ n. In this paper, we propose two methods, one based on the range tree and the other based on the segment dragging query, obtaining the following complexity bounds: (1) a group k-NN query can be handled in O(m log n + k(log log n + logm)) time after preprocessing P in O(mn log n) time and space, or (2) a query can be handled in O(m logn + (k +m) log n) time after preprocessing P in O(mn log n) time using O(mn) space. We also show that our approach can be applied to the group k-farthest neighbor query problem.
منابع مشابه
On Top-$k$ Weighted SUM Aggregate Nearest and Farthest Neighbors in the $L_1$ Plane
In this paper, we present algorithms for the top-k nearest neighbor searching where the input points are exact and the query point is uncertain under the L1 metric in the plane. The uncertain query point is represented by a discrete probability distribution function, and the goal is to efficiently return the top-k expected nearest neighbors, which have the smallest expected distances to the que...
متن کاملNearest Neighbor and Reverse Nearest Neighbor Queries for Moving Objects
With the proliferation of wireless communications and the rapid advances in technologies for tracking the positions of continuously moving objects, algorithms for efficiently answering queries about large numbers of moving objects increasingly are needed. One such query is the reverse nearest neighbor (RNN) query that returns the objects that have a query object as their closest object. While a...
متن کاملApproximate line nearest neighbor in high dimensions
We consider the problem of approximate nearest neighbors in high dimensions, when the queries are lines. In this problem, given n points in R, we want to construct a data structure to support efficiently the following queries: given a line L, report the point p closest to L. This problem generalizes the more familiar nearest neighbor problem. From a practical perspective, lines, and low-dimensi...
متن کاملNon-zero probability of nearest neighbor searching
Nearest Neighbor (NN) searching is a challenging problem in data management and has been widely studied in data mining, pattern recognition and computational geometry. The goal of NN searching is efficiently reporting the nearest data to a given object as a query. In most of the studies both the data and query are assumed to be precise, however, due to the real applications of NN searching, suc...
متن کاملFacility location problems in the plane based on reverse nearest neighbor queries
The Reverse Nearest Neighbor (RNN) problem is to find all points in a given data set whose nearest neighbor is a given query point. Given a set of blue points and a set of red points, the bichromatic version of the RNN problem, for a query blue point, is to find all the red points whose blue nearest neighbour is the given query point. In this paper, we introduce and investigate new optimization...
متن کامل